If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2r^2-2r-40=0
a = 2; b = -2; c = -40;
Δ = b2-4ac
Δ = -22-4·2·(-40)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-18}{2*2}=\frac{-16}{4} =-4 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+18}{2*2}=\frac{20}{4} =5 $
| 2r^2+2r-40=0 | | (43-3x)=13 | | 2(11x-7)=4x+1 | | 4n+7=17 | | 2(4x+1)=11x-7 | | -45=q-9 | | S=3h+25 | | -45=q | | x4–4x2=0 | | 12b-9+b=-87 | | 6y+34=67 | | 9(x-5)+36=8x-3 | | 7n^2+12n-4=0 | | 3x+41=8x-4 | | (9x-6)+(8x+1)=180 | | 14=2√x-9) | | (x+3)^2+11=75 | | n/3+7=5 | | F(x)=5x/x^2-9 | | 6(2-3c)=25 | | 4u-u=21 | | -16=-9(6x-2) | | (x-9/x)=2/5 | | 161-j=70 | | 6+8(1+9z=25 | | 2n^2+4n-14=-8 | | x(x+4)+x(x+2)=2x2+12 | | X2-10x=-25 | | 7(x-5)+31=7x-4 | | 5(2b-9)=32+6b | | 7p-5=18 | | 4(x/5)=0.33 |